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 Abstract 

The issue of extending the extended constraint combination method to 

nonholonomic systems with nonideal constraints is considered.  A generalization 

of the Gauss principle of least constraint for systems with non-ideal constraints (for 

systems with friction) is given in the case when possible displacements satisfy the 

conditions of the extended method of combining constraints. 
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INTRODUCTION 

Consider a mechanical system of N  material points KM  

 ( Nk ,...,2,1 )  km with masses , whose position relative to the inertial Cartesian 

coordinate system is determined by the radius-vectors )(


xr
k


 ( N3,...,2,1 ).  The 

system is under the action )( XFk


of given forces and is constrained by joint and 

independent connections, among which there are both geometric 

           1 2 3( , ,..., , ) 0Nf x x x t      ( 1,..., )a  ,                                                          (1) 

 and kinematic, generally speaking, non-linear 

            ( , , ) 0x x t       ( 1,..., )b  .                                                           (2) 

  The possible displacements allowed by the constraints are determined by the 

independent relations 
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Let us assume that the sum of the elementary work of the reaction forces on any 

possible displacement is nonzero 

0
1




k

N

k
k

rR


 .                                                                                                          (4) 

 It is known that the bonds in this case will refer to the bonds with friction. 

 We decompose 
k

R


 the bond reaction acting on the point kM  into two components 

of the force 

k
R


 and n

k
R


, which have the following properties: 
k

r


  

 1. On every possible movement of the system 

 0
1




k

N

k

k
n rR


  , 0

1




k

N

k

k rR


  .                                                                               (5) 

 Informing the system of an arbitrary possible displacement, by virtue of condition 

(5), we obtain the equation: 

 0)(
1




kkk

N

k
kk

rwmRF



.                                                                                  (6) 

 which expresses the general equation of dynamics for the considered systems with 

nonideal constraints. 

As applied to systems with friction, equation (6) is a necessary and sufficient 

condition for the correspondence to the given forces of the system's motion 

compatible with the constraints, given the known system friction law.  To do this, 

differentiating equations (1) two times with respect to time, and equations (2) once, 

we obtain: 

              ),...,1(0
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aAx
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    ,                                                     (7) 

         , ),...,1(0
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                                                           (8) 

 where , terms that do not contain accelerations, and are the actual 


x -accelerations 

of the points of the system. 

We denote by 


x  kinematically possible accelerations, that is, accelerations 

compatible with constraints (1) and (2).  The latter will satisfy the conditions: 

          
3

1

0
n f

x A
x


 

 


  


     ( a,...,1 ),                                                                 (9) 
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Since they are  BandA  functions of time, coordinates and velocities, then from 

(6);  (9), (10) we get 

 x x x     , 

3

1

0
n f

x
x




 



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  , 
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
  .                                                                                                   (11) 

Comparing these expressions with the conditions for possible displacements (3), 

we see that the acceleration variations satisfy the same conditions as the possible 

displacements.  Therefore, from (6) we get: 

  
3

1

0
n

m x X R x x

     
 

     .                                                                       (12) 

The movement of the system, which it will perform under the action of given forces 

k
F  and forces equal to the forces of friction 

k
R


, will be called the actual released 

movement.  We denote the accelerations of points in the actual freed motion by 


a

( N3,...,2,1 ). 

Since the general equation of dynamics is also valid for a liberated system, the 

expression takes place: 

  
3

1

0
n

m a X R x x

     
 

     .                                                                       (13) 

Now subtracting (12) from (13), we obtain 

   
3

1

0
n

m x a x x    
 

   
  .                                                                           (14) 

The last relation can be converted to the form: 

   
   

 

2 2 2 2

2 2

2 2

2 2

x x x x x x a am
m x a x x

a x a x
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    

   

         
    

     
 

  .   (15) 

If we now introduce deviation measures [6] (definition according to Gauss) 

2( )
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dD

m
A x a
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    , 
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then from (10) we get 

     0d dD gA A A      .                                                                                      (16) 

Since each term of the last relation is non-negative, the conditions must be satisfied 

 d gA A  , dD gA A .                                                                                         (17) 

The second of these inequalities is a generalization of the Gauss principle of least 

constraint for systems with non-ideal constraints.  According to this principle, 

among the possible accelerations, the real accelerations of the points of the system 

with non-ideal constraints minimize the function 
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Thus, according to the obtained Gauss principle, among all conceivable 

accelerations, the real accelerations of the points of systems with friction turn the 

function (18) to a minimum and vice versa, the conditions for the minimum of the 

function (18) in terms of accelerations that satisfy conditions (9) and (10) lead to 

differential  equations of the actual motion of a system with non-ideal constraints 
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 .  (19) 

Thus, the extended constraint combination method is extended to nonholonomic 

systems with nonideal constraints.  It is shown that for such systems there is a 

general equation of dynamics, which allows us to generalize the Gauss principle of 

least constraint. 

 

 

 

 

 

 



 

   ISSN: 2776-0987            Volume 3, Issue 2, Feb., 2022 
 

30 

  

REFERENCES 

1. Манглиева Ж.Х., Ибрагимов А.Д  «The gauss principle for systems with non-

ideal connections in the case of possible movements satisfying the extended 

method of combining connections» Proceeding of International Conference on 

Scientific Endeavors and opportunities Hosted from Telavi, Georgia on 17th -

18th March, 2021 111-113 бет 

2. Манглиева Ж.Х., Ибрагимов А.Д  «Investigation of the Stability of 

Programmed Movements of the Speed Controller» Design Engineering  ISSN: 

0011-9342 | Year 2021 Issue: 9 | Pages: 3576 – 3583 

3. Коршуова Н.А., Рузматов М., Манглиева Ж.Х., Ибрагимов А.Д 

“Аналитические решения для участков малой тяги в центральном 

ньютоновском поле” Journal of Advances in Engineering Technology Sept, 

2020  Vol.1(1), Sept, 2020 

4. Манглиева Ж.Х, Норов Г.М, Ибрагимов а.Д «Optimal stabilization of partial 

movements of the frictional speed controller in case of imprecise fulfillment of 

the conditional connection» Аmerican journal of economics and business 

management  ISSN: 2576-5973 Vol. 3, No.5, November-December 2020  

5. Коршунова Н.А.,Рузматов М Манглиева  Ж.Х Ибрагимов А.Д Integrals for 

Intermediate Thrust Arcs in a Field of Two Fixed Centers Jour of Adv Research 

in Dynamical & Control Systems, Vol. 12, Special Issue-07, 2020  

6. Лурье А.И. Аналитическая механика. – М.: Гостехиздат, 1961. –824с.  

 

 


