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ABSTRACT 

This article examines the uniqueness of the solution of the boundary problem for the 

second regular ordinary differential equation, which is solved in the Bernoulli 

equation. The uniqueness of the issue is proved by the principle of extremes.  
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Problem Statement 

 2 3 4

1 2 3 4( ) ( ) ( ) ( ),y P x y P x y P x y P x y P x           0 1;x x x   (1) 

equation and 

 0 0y x y  ,   1 1y x y     (2) 

find the function  y x  that satisfies the boundary conditions. Here 

       1 2 3, , ,P x P x P x P x - given continuous functions. 

 

Theorem.  1p x   (1) is a special solution of equation (2) that does not satisfy the 

boundary condition,    3 4 1( ) 4 0P x P x p x   and 

       2 3

1 2 1 3 1 4 1 1( ) 2 ( ) 3 ( ) 4 ( )P x P x p x P x p x P x p x Q x    ,   0 1 0 0y p x  , 

 1 0Q x  ,                2 3

1 1 1 2 1 3 1 p x P x p x P x p x P x p x P x       

if the conditions are satisfied, then the problem 3S  has a unique solution. 

Proof. Using the notation  'y p x  in Equation (1), we construct the following 

equation        2 3

1 2 3' ( ) ( ) ( ) ( )p x P x p x P x p x P x p x P x      (3)  

and condition  0 0p x y  (4) from the boundary conditions (2). 
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The resulting {(3), (4)} is in the new case 

      1p x p x z x  ,     (5) 

by performing the substitution and after some elementary simplification we form 

the  

                2 3

1 2 1 3 1 4 12 3 4z x P x P x p x P x p x P x p x z        

                   2 2 3

2 3 1 4 1 3 4 13 6 4P x P x p x P x p x z P x P x p x z x       

                       4 2 3 4

4 1 1 1 2 1 3 1 4 1P x z x P x p x P x p x P x p x P x p x P x p x        

equation. If we apply the conditions of the theorem to this equation 

         4
1 4z x Q x z x P x z x        (6) 

Based on the substitution of the Bernoulli equation in the form Sx and (4) from the 

boundary condition (5) 

   0 0 1 0z x y p x       (7) 

we create the condition. (6) in equation 

 
 3

1
t x

z x
       (8) 

by carrying out replacement, 

       1 33 2t x Q x t x P x        (9) 

while the equation and (7) condition 

 
 

0 2

0 1 0

1
t x

y p x

  

     (10) 

we form the condition. As a result, we come to the new {(9), (10)} issue. 

Let's assume, {(9),(10)} let the issue have t1 as well as t2 solutions [1-9].  In that 

case 

     1 2t x t x t x      (11) 

function 

     13 0t x Q x t x    ,  0 1;x x x ,    (9' ) 

 0 0t        (10') 

will be the solution to a problem. 

Suppose that the problem {(9' ),(10')} has a solution   0t x  ,  0 1;x x x . 
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Since the function  t x  is defined and continuous in the segment  0 1;x x , it reaches 

a positive maximum (negative minimum) value at some point  0 1;x x x  of this 

segment according to Weierstrass's theorem 2. 

We assume that the function  t x  should reach a positive maximum (minus 

minimum) value  0 1,x x  in half the range. Assuming that    0 0 0t x    is a 

positive maximum (minus minimum) value, then   0t x    equality, as well as 

     13 0t x Q x t x    inequality is executed [7-12]. 

This is contrary to (9' ). Hence,  t x  the function is (basically) at  0 1,x x x   ( (

9' ) basically) 

  0t x  ,  0 1,x x x      (12). 

Based on this (11)    1 2t x t x . And it turns out that the solution of the issue 

{(9),(10)} is no more than one. All in all, {(9),(10)} the issue is that if he has a 

solution in the cut  0 1;x x , It is the only one. {(9), (10)} since the solution of the 

issue is unique {(1), (2)} the solution of the issue is also unique. Because, {(9),(10)} 

the issue {(1), (2)} is an equivalent issue. 

 

Availability of Problem Solutions. (9) Using the Bernoulli method to find the 

general solution of equation  

     t x u x v x        (13) 

apparently looking for. Substituting (13) into (9) 

             1 32 2u x v x u x v x Q x v x P x          

creating equality, hence 

   
 1

0

3

0

x

x

Q s ds

v x v x e

 
  , 

   
 

1

0

0

3 ( )

0 3
0

3
( )

s

x

Q dx

x

u x u x P s e ds
v x

 
     

find the functions and solve the general solution of equation (9) based on (13) 
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     
 1 1

0 0

0

2 ( ) 2

0 0 33 ( )

s x

x x

Q d Q s dsx

x

t x u x v x P s e ds e

  
 

  
    
 
 

 , 

   
 1 1

0 0

0

2 ( ) 2

0 33 ( )

s x

x x

Q d Q s dsx

x

t x t x P s e ds e

  
 

  
    
 
 

  

in the view. Subordinate this solution to the condition (10) Rx 

 
 

 1 1

0 0

0

1

2
2 ( )

32

1 1 0

1
3 ( )

s x

x x

Q τ dτ Q s dsx

x

z x P s e ds e
y p x



 
  

     
    

  

find the function. Going back to the substitution (5) above, we find the conditional 

solution of equation (4) in the form  

   
 

 1 1

0 0

0

1

2
2 ( )

1 32

1 1 0

1
3 ( )

s x

x x

Q d Q s dsx

x

p x p x P s e ds e
y p x

 


 

  
     

   
 

 ,  

and finally, we find the conditional solution of equation (1) in the form  'y p x  

using the notation  

   
 

 1 1

0 0

0

1

2
2 ( )

1 32

1 1 0

1
3 ( )

s x

x x

Q d Q s dsx

x

p x p x P s e ds e
y p x

 


 

  
     

   
 

 . 

The theorem is fully proved. 
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